このページのURL

この文献を取り寄せる

<電子ブック>
The Kobayashi-Hitchin correspondence / Martin Lubke, Andrei Teleman

出版者 Singapore ; River Edge, N.J : World Scientific Pub. Co
出版年 c1995
大きさ viii, 254 p
書誌ID MC00031070
冊子体 The Kobayashi-Hitchin correspondence / Martin Lübke, Andrei Teleman

所蔵情報を非表示

eBook オンライン資料

MC000038836
World Scientific eBooks 9789812815439

書誌詳細を非表示

一般注記 Includes bibliographical references (p. 242-250) and index.
ch. 0. Introduction -- ch. 1. Preparations and basic material. 1.1. Holomorphic structures and integrable connections. 1.2. Gauduchon metrics. 1.3. Degree maps. 1.4. Stability of vector bundles -- ch. 2. Hermitian-Einstein connections and metrics. 2.1. Definitions and first results. 2.2. Vanishing theorem and Chern class inequality. 2.3. Stability of Hermitian-Einstein bundles -- ch. 3. Existence of Hermitian-Einstein metrics in stable bundles. 3.1. The strategy of the proof. 3.2. The continuity method: first step. 3.3. The continuity method: second step. 3.4. The construction of a destabilising subsheaf -- ch. 4. The Kobayashi-Hitchin correspondence. 4.1. Summary. 4.2. Moduli spaces of connections. 4.3. Moduli spaces of holomorphic structures. 4.4. Isomorphy of moduli spaces. 4.5. Local models. 4.6. Instantons and Hermitian-Einstein connections -- ch. 5. Applications. 5.1 Openness of the stability property. 5.2 Dependence on the base metric. 5.3 The natural Hermitian metric in the moduli space. 5.4 A proof of Bogomolov's theorem on surfaces of type VII[symbol] -- ch. 6. Examples of moduli spaces. 6.1. The algebraic case. 6.2. Non-Kähler principal elliptic fibre bundles over curves. 6.4. SL(2, C)-bundlcs on principal elliptic bundles over curves of genus ≥ 1. 6.5. SL(2, C)-bundles on primary elliptic Hopf surfaces -- ch. 7. Appendices. 7.1. Hermitian geometry. 7.2. Elliptic operators. 7.3. Sobolev spaces. 7.4. Local diagonalisation. 7.5. Analytic subspaces of a Banach manifold
By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic - resp. MHE of irreducible Hermitian-Einstein - structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples. After discussing the stability concept on arbitrary compact complex manifolds in chapter 1, the authors consider, in chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) chapter 3. In chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included.
Electronic reproduction. Singapore : World Scientific Publishing Co., 1995. System requirements: Adobe Acrobat Reader. Mode of access: World Wide Web. Available to subscribing institutions.
著者標目 *Lubke, Martin 1954-
Teleman, Andrei 1962-
World Scientific (Firm)
件 名 LCSH:Kobayashi-Hitchin correspondence (Algebraic geometry)
LCSH:Electronic books
分 類 LCC:QA601
DC22:516.35
資料種別 機械可読データファイル
巻冊次 ISBN:9789812815439
XISBN:9810221681
XISBN:9789810221683